On the Thue-Siegel-Roth theorem, II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Thue–Siegel–Roth Theorem

In this paper we will give a proof of the Thue-Siegel-Roth Theorem, which states that for any algebraic number α and any ǫ > 0 there exists only a finite number of pairs of coprime integers p, q such that ∣ α − p q ∣ ∣ < 1 q2+ǫ . We will follow the proof as it is presented Leveque’s book, [8, ch 4]. This proof also deals with the more general case when p q is allowed to be an algebraic number i...

متن کامل

Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt

A proof of the transcendence of a real number ξ based on the Thue–Siegel–Roth–Schmidt method involves generally a sequence (αn)n≥1 of algebraic numbers of bounded degree or a sequence (xn)n≥1 of integer r-tuples. In the present paper, we show how such a proof can produce a transcendence measure for ξ, if one is able to quantify the growth of the heights of the algebraic numbers αn or of the poi...

متن کامل

A Note on Roth ’ s Theorem

We give a quantitative version of Roth’s Theorem over an arbitrary number field, similar to that given by Bombieri and van der Poorten. Introduction. Let K/Q be a number field, with [K : Q] = d. Let MK be a complete set of inequivalent absolute values on K, normalized so that the absolute logarithmic height is given by h : K → [0,∞), h(x) = ∑

متن کامل

The Siegel-shidlovskii Theorem Revisited

Using Y.André's result on differential equations staisfied by E-functions, we derive an improved version of the Siegel-Shidlovskii theorem. It gives a complete characterisation of algebraic relations over the algebraic numbers between values of E-functions at any non-zero algebraic point.

متن کامل

On a Theorem of Aubry-thue

If a, b and m are relatively prime, then (1) can be solved by integers x and y such that \x\ ^ m, \y\ ^ m*. This is called, in general, the Theorem of Thue. See, for instance, the books of A. Scholz [7, p. 45], and O. Ore [5, p. 268]. If (b, m) = 1 and m is not a square, the results of Aubry and Thue are identical. If m is a square but b/m* is not an integer, then Aubry's result is better than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1959

ISSN: 0386-2194

DOI: 10.3792/pja/1195524207